
E Damped system

E.1 Derivation

This is mostly from Wikipedia3. Take a simple system with a mass, a spring and a damper (figure 1): There are

m kg

c Ns/mk N/m

Figure 1: Mass spring damper system.

three forces:

1. A force from the spring, proportional to displacement

fs = −ky. (162)

2. A force from the damper, proportional to velocity

fd = −c
dy

dt
. (163)

3. An (optional) external input force
fi. (164)

Putting these into Newton’s second law,

force = mass× acceleration (165)

fi − ky− c
dy

dt
= m

d2y

dt2
(166)

m
d2y

dt2
+ c

dy

dt
+ ky = fi (167)

or, writing y as y(t) and fi and f(t)

mÿ(t) + cẏ(t) + ky(t) = f(t). (168)

The Laplace transform4 of this is

m
[
s2Y(s) − sy(0) − ẏ(0)

]
+ c [sY(s) − y(0)] + kY(s) = F(s) (169)

Y(s)(ms2 + cs+ k) = msy(0) +mẏ(0) + cy(0) + F(s) (170)

Y(s) =
msy(0) +mẏ(0) + cy(0) + F(s)

ms2 + cs+ k
. (171)

So, there is a single zero and a double pole.

E.2 Reparameterisation

The two poles are at

s =
−c±

√
c2 − 4mk

2m
, (172)

3https://en.wikipedia.org/wiki/Damping
4https://en.wikipedia.org/wiki/Laplace_transform
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and are coincident when c2 = 4mk. Further, when c = 0 the poles are pure imaginary at

s = ±j
√
k

m
, (173)

at which the system will resonate. Hence, define

ζ2 ,
c2

4mk
=⇒ c = 2ζ

√
mk, (174)

and

ω2
0 ,

k

m
=⇒ k = mω2

0. (175)

In this case, the system becomes
ÿ(t) + 2ζω0ẏ(t) +ω

2
0y(t) = f(t)/m. (176)

Note also that we can define

x(t) ,
f(t)

k
=⇒ f(t) = kx(t), (177)

which has the effect of parameterising the force as a distance x(t) being the distance that the spring would
move if subjected to f(t). We then have

f(t)

m
=
k

m
x(t) = ω2

0x(t) (178)

so

Y(s) =
sy(0) + ẏ(0) + 2ζω0y(0) +ω2

0X(s)

s2 + 2ζω0s+ω2
0

, (179)

with poles

s1 = −ω0ζ+ω0

√
ζ2 − 1, (180)

s2 = −ω0ζ−ω0

√
ζ2 − 1, (181)

or, if ζ = 1 (critical damping)

s1 = s2 = −ω0. (182)

σ

ω

−ω0 ω0
σ

ω

−ω0 ω0
σ

ω

−ω0 ω0

Figure 2: Damped systems for ζ = 1.5, 1 and 0.1 respectively, and assuming ẏ(0) = 0 and X(s) = 0.

In general, for the system to do something interesting, it either needs non-zero initial conditions, or some
driving force. These are discussed below.
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Figure 3: Driven systems: Impulse, step and linear respectively.

E.3 General solutions

E.3.1 General case

We have

Y(s) =
sy(0) + ẏ(0) + 2ζω0y(0) +ω2

0X(s)

s2 + 2ζω0s+ω2
0

(183)

with

s1 = −ω0ζ+ω0

√
ζ2 − 1, (184)

s2 = −ω0ζ−ω0

√
ζ2 − 1. (185)

The solution does not have a particularly attractive form:

y(t) =
y(0)

−s2 + s1

(
s1e

s1t − s2e
s2t
)
+
ẏ(0) + 2ζω0y(0) +ω2

0X(s)

−s2 + s1

(
es1t − es2t

)
(186)

= e−ζω0t
[
Ae

√
ζ2−1ω0t − Be−

√
ζ2−1ω0t

]
(187)

where

A =

(
ζ+
√
ζ2 − 1

)
ω0y(0) + ẏ(0) +ω2

0X(s)

2ω0
√
ζ2 − 1

(188)

B =

(
ζ−
√
ζ2 − 1

)
ω0y(0) + ẏ(0) +ω2

0X(s)

2ω0
√
ζ2 − 1

. (189)

The natural response is obtained for X(s) = 0; the form does not simplify.

E.3.2 Impulse driven

If we assume steady state initial conditions and an impulsive driving force, X(s) = 1, we have

Y(s) =
ω2

0

s2 + 2ζω0s+ω2
0

(190)

y(t) =
ω0

2
√
ζ2 − 1

e−ζω0t
(
e
√
ζ2−1ω0t − e−

√
ζ2−1ω0t

)
(191)

and if ζ2 < 1,

=
ω0√

1 − ζ2
e−ζω0t sin

(√
1 − ζ2ω0t

)
. (192)

i.e., an exponentially weighted sinusoid.
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E.4 Critically damped solutions

E.4.1 Impulse driven

Assuming critical damping and an impulse driving force,

Y(s) =
sy(0)

(s+ω0)2 +
ẏ(0) + 2ω0y(0) +ω2

0

(s+ω0)2 (193)

y(t) = y(0)(1 −ω0t)e
−ω0t u(t) + [ẏ(0) + 2ω0y(0) +ω2

0]te
−ω0t u(t), (194)

= (A+ Bt)e−ω0t u(t), (195)

where u(t) is the Heaviside step function and

A = y(0), (196)

B = ẏ(0) +ω0y(0) +ω2
0. (197)

For steady state initial conditions,
y(t) = ω2

0te
−ω0t u(t). (198)

E.4.2 Step driven

Assuming critical damping and a step driving force,

x(t) = b (199)

X(S) =
b

s
(200)

Y(s) =
sy(0)

(s+ω0)2 +
ẏ(0) + 2ω0y(0)

(s+ω0)2 +
bω2

0

s(s+ω0)2 (201)

y(t) = y(0)(1 −ω0t)e
−ω0t u(t) + [ẏ(0) + 2ω0y(0)]te−ω0t u(t) + b− b(1 +ω0t)e

−ω0t u(t), (202)

=
[
b− (A+ Bt)e−ω0t

]
u(t), (203)

A = y(0) + b, (204)

B = ẏ(0) +ω0(y(0) + b). (205)

For steady state initial conditions and b = 1,

y(t) =
[
1 − (1 +ω0t)e

−ω0t
]
u(t). (206)

E.4.3 Linear function driven

In this case,

x(t) = b+mt (207)

X(s) =
b

s
+
m

s2 , (208)

so it is the step case with extra terms
mω2

0

s2(s+ω0)2 (209)

and
−
m

ω0

(
2 −ω0t− (ω0t+ 2)e−ω0t

)
(210)

so

y(t) =

[
−

2m
ω0

+mt+ b− (A+ Bt)e−ω0t

]
u(t), (211)

with

A = y(0) + b+
2m
ω0

, (212)

B = ẏ(0) +ω0(y(0) + b) +m. (213)
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E.5 Discretisation

E.5.1 Impulse driven, general case

First sample the time domain with t = nT ,

y(t) =
ω0√
ζ2 − 1

e−ζω0t sin
(√

ζ2 − 1ω0t
)

(214)

y(nT) =
ω0√
ζ2 − 1

e−ζω0nT sin
(√

ζ2 − 1ω0nT
)

(215)

=
θ2

0

θT
rn sin(nθ) (216)

where

θ0 = ω0T , (217)

θ = θ0

√
ζ2 − 1, (218)

r = e−ζθ0 , (219)

Now transform

Y(z) =
θ2

0

θT

rz−1 sin(θ)
1 − 2rz−1 cos(θ) + r2z−2 (220)

=
θ2

0

θT

rz sin(θ)
(z− rejθ)(z− re−jθ)

. (221)

E.5.2 Impulse driven, critically damped

Sampling is the same as above:

y(t) = ω2
0te

−ω0t u(t) (222)

y(nT) = ω2
0nTe

−ω0nT u(0) (223)

=
θ2

0

T
nrn u(0). (224)

Then the transform is also tabulated

Y(z) =
θ2

0

T

rz−1

(1 − rz−1)2 (225)

=
θ2

0

T

rz

(z− r)2 . (226)

E.5.3 Critically damped natural response from offset

This like the impulse driven case, but with non-zero y(0) and no input:

y(t) = (y(0) +ω0y(0)t) e−ω0t u(t) (227)

y(nT) = (y(0) +ω0y(0)nT) e−ω0nT u(0) (228)

= (y(0)rn + θ0y(0)nrn) u(0) (229)

Y(z) = y(0)
1

1 − rz−1 + θ0y(0)
rz−1

(1 − rz−1)2 (230)

= y(0)
(1 + rθ0)z− r

(z− r)2 (231)
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E.5.4 Basic exponential decay

This is trivial, but for reference:

y(t) = e−ω0t (232)

y(nT) = e−ω0nT (233)

= rn (234)

Y(z) =
1

1 − rz−1 (235)

=
z

z− r
(236)
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