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Laurent series
I should have used Pierre Alphonse Laurent, but he died before
he was famous enough to have his photo taken

I (Probably) started with (something like) Cauchy’s formula

xn =
1

2πj

∮
γ

F(z)

(z− c)n+1
dz

I Showed that it evaluates to

F(z) =

∞∑
n=−∞ xn(z− c)

n

I Or if c = 0,

F(z) =

∞∑
n=−∞ xnz

n

It’s called a Laurent series1

1https://en.wikipedia.org/wiki/Laurent_series
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Taylor series

I For z real, only sum from 0

F(z) =

∞∑
n=0

xn(z− c)
n

is a Taylor series
I If c = 0

F(z) =

∞∑
n=0

xnz
n

is a Maclaurin series (after Colin Maclaurin)

so, the Laurent series is not nearly as scary as it looks.
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Definition

The z-transform is a Laurent series with c = 0 and negative n

F(z) =

∞∑
n=−∞ xnz

−n,

xn =
1

2πj

∮
C

dz F(z)zn−1.

It has all the properties of the Taylor and Maclaurin series
I It’s unique
I It decays quickly (infinite sum converges)
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Why?

Sample a continuous signal

x(t) =

∞∑
n=−∞ x(nT)δ(t− nT)

=

∞∑
n=−∞ xnδ(t− nT),

which is a sampled form of x(t).
Now stick that in the Laplace transform. . .
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So...

F(s) =

∫∞
−∞ dt

∞∑
n=−∞ xnδ(t− nT) exp (−st) ,

=

∞∑
n=−∞ xn

∫∞
−∞ dt δ(t− nT) exp (−st) ,

=

∞∑
n=−∞ xn exp (−snT) .

Define
z = exp(sT),

and

F(z) =

∞∑
n=−∞ xnz

−n.

The Laplace transform of a sampled signal is the z-transform
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Summary

Continuous

Discrete

Real Complex

LaplaceFourier

DTFT z
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Homomorphic signal processing
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Homomorphic signal processing

The term homomorphic comes from Oppenheim.
I Refers to the idea of transforming a signal such that the

components are linearly combined.
I Allows non-linear processing in a linear environment.

x F(x) x ′ F−1(x) y

i.e., x is a non-linear combination of signals, x ′ is a linear
combination.
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Convolutional case

Convolution is a very common situation for homomorphic
processing.

x = s ∗ h

After DFT,
X = S×H.

And then after log,

logX = log S+ logH.
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Cepstrum 1: The easy way

The Bogert et al paper in 1963:
I Give the paper a silly name.
I Make up new words.
I Fourier transform of log power spectrum.
I Since the power spectrum is symmetric, it’s the DCT.
I And since

log(x2) = 2 log(x),

you can use magnitude intead. It’s just a factor of 2 smaller.
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Earthquakes

Say there is a signal x(t) added to a delayed and scaled version
of itself

y(t) = x(t) + αx(t− τ).

The Fourier transform and power spectrum of that signal are
then

Y(f) = X(f) + αX(f)ej2πfτ

Y(f)2 = X(f)2(1 + 2α cos 2πfτ+ α2).

Given that α < 1, and log(1 + x) =
∑∞
n=1

xn

n the log power
spectrum can be approximated as

2 log Y(f) = 2 logX(f) + 2α cos 2πfτ.

So, the echo manifests itself as ripple in the log spectrum.
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Cepstrum 2: The tricky way

Oppenheim and Schafer in 1968:
I Use difficult words.
I Use lots of equations, contour integrals.
I Make up new functions (e.g., complex log).
I Inverse Fourier transform of (complex) log of complex

spectrum.
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Rationale

Oppenheim realised that Bogert et al. were doing a
homomorphic transformation

I The logarithm (obviously) separates convolutions
I The second DFT separates maximum and minimum phase

This is not obvious at all!

Say we have a signal that is all poles and zeros

F(z) =

∏Mi

k=1(1 − akz
−1)

∏Mo

k=1(1 − bkz)∏Ni
k=1(1 − ckz−1)

∏No
k=1(1 − dkz)

Azr
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Rationale
Do a bit of algebra

log F(z) =

−1∑
n=−∞

[
Mo∑
k=1

b−nk
n
z−n −

No∑
k=1

d−nk
n
z−n

]
+ log(A)

+

∞∑
n=1

[
−

Mi∑
k=1

ank
n
z−n +

Ni∑
k=1

cnk
n
z−n

]
.

That has the form of a z-transform, the inverse of which is

xn =



Mo∑
k=1

b−nk
n

−

No∑
k=1

d−nk
n

n < 0,

log(A) n = 0,

−

Mi∑
k=1

ank
n

+

Ni∑
k=1

cnk
n

n > 0.
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Complex cepstrum

The complex cepstrum is defined in terms of z-transform
I It’s defined as the inverse z-transform of the logarithm of

the z-transform

cn =
1

2πj

∮
C

dz log(X(z))zn−1.

I The unit circle is in the convergence region, so

cn =
1

2π

∫π
−π
dω log

Fourier t’form︷ ︸︸ ︷(
X(ejω)

)
ejωn︸ ︷︷ ︸

Inverse Fourier transform

i.e., we can get away with the forward and inverse discrete
time Fourier transforms
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The MFCC approach to ASR
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MFCC

MFCC: Mel Frequency Cepstral
Coefficients

I MFCCs are a rough
perception model.

I They model the path of
sound through the human
ear.
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Signal flow

Acoustic source

Pre-emphasis

Fourier transform

Frequency warp

Cepstrum

MFCCs are also a rough
homomorphic model

I It’s not presented that way
mathematically.

I It’s not justified that way
conceptually.

I See later.
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Source

There’re few restrictions on the audio source
I Sampling rate 8 kHz or greater.

16 kHz is typical.
I 8 or 12 bit resolution is OK.

16 is typical.

Anything higher than 40 dB SNR.
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Pre-emphasis

<

=

Glottal formant & lip radiation

The official story:
I Mimics human hearing

response.
I Rough inverse of human

production.

The un-official story:
I For LPC, it’s necessary.
I For MFCCs, it doesn’t make

a blind bit of difference!

But, see later. Especially
cepstral normalisation.
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Single zero filter

Cancel out the second pole of the Glottal formant

<

= z transform

H(z) = 1 − ρz−1.

Difference equation

yt = xt − ρxt−1.

Typically, ρ = 0.97.
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Single pole filter

Single pole is not so common, but I’ve seen it.

<

= z transform

H(z) =
1

1 + ρz−1
.

Difference equation

yt = xt − ρyt−1.
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8 kHz spectrogram

No pre-emphasis Pre-emphasis
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“Eight five zero”
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DFT

The DFT is just the fastest way to get a frequency
representation.
Motivated by the frequency dependent response of the cochlea.
A few notes on windows...
http://en.wikipedia.org/wiki/Window_function
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Hamming Window

f(x) = 0.54 − 0.46 cos
(

2π
x

N

)
, 0 6 x 6 N− 1.

x

f(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) = 0.54 − 0.46 cos

(
2π

x

N− 1

)
, 0 6 x 6 N− 1.

x

f(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Hann Window

f(x) = 0.5 − 0.5 cos
(

2π
x

N

)
, 0 6 x 6 N− 1.

x

f(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) = 0.5 − 0.5 cos

(
2π

x

N− 1

)
, 0 6 x 6 N− 1.

x

f(x)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Which one?

For ASR
I It doesn’t really matter.
I You could even skip the window completely.

For TTS (Text to Speech, speech synthesis) and enhancement
I You should use a window that works with overlap-add.
I Hann is OK, Hamming is not.
I Make sure the total power sums to unity.
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The non-linear ear

The ear is not equally sensitive to different frequencies (in
Hertz).
Broadly speaking

I There is a lower limit; we can’t hear DC.
I There is an upper limit of about 20 kHz (think CD

sampling).
I The response is approximately logarithmic.
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Mel scale
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Other warps

Mel is not the only scale.
I There is also the Bark scale.
I Bark is actually a bunch of points rather than a scale, but

you can interpolate them.

Then there is the bilinear transform
I Which is another lecture in itself.

35 / 49



Filter-bank

The DFT gives us a scale linear in Hertz
I It’s the wrong scaling.
I There are way too many bins.

A very common approach is use a filter-bank.
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23 bin mel-spectrogram

Spectrogram Mel-o-gram

0 20 40 60 80 100 120
0

4000

“Eight five zero”
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Cepstrum

In ASR, the cepstrum has two distinct components:

1. The logarithm is to do compression.
The ear has been shown to have (approximately)
logarithmic sensitivity.

2. The DCT is to do decorrelation and dimensionality
reduction.
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Correlated data

m1

m2

Filterbank output is highly
correlated. The distributions do
not align with the axes.
Higher level processing requires
multivariate full covariance
distributions.
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Decorrelated data

c1

c2

Cepstral data is largely
uncorrelated. The distributions
align with the axes.
Higher level processing can use
diagonal covariance.
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23 bin cepstrogram

Mel-o-gram Cepstr-o-gram

“Eight five zero”
Note

I This cepstrum is both mean and variance normalised.
I Otherwise, the different bins have way different dynamic

ranges.

41 / 49



Cepstrum truncation

Typical numbers:
I DFT is 256 point and gives 129 bins.
I Filterbank gives 20–30 bins.
I So, the cepstrum is 20–30 bins, but...

We can get away with the first 12 or so.

Generally
I Low order cepstra have speaker-independent information

= Good for ASR
I High order cepstra have speaker-dependent information.

= Good for Synthesis
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Convolutional noise

Acoustic source

Pre-emphasis

Fourier transform

Frequency warp

Cepstrum

Convolutional

Convolutional

Multiplicative

Multiplicative

Additive

Consider the flow of
convolutional noise through the
front-end.
It’s really quite simple, no
maths necessary.
The cepstrum is a very
convenient parameterisation in
which to do convolutional noise
removal.
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Cepstral Mean Normalisation

Make two assumptions:

1. The convolutional noise is constant.
Actually quite a reasonable assumption.

2. The mean of speech cepstra is zero.
This is more of a leap of faith.

=⇒ The cepstral mean is the convolutional noise.

Removing the cepstral mean is equivalent to removing
convolutional noise.

In practice, in the context of ASR, regardless of whether or not
the assumptions are valid, CMN works very well, the vast
majority of the time!
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Static CMN

Say we have cepstral samples ct−N+1, ct−N+2, . . . , ct,
The ML estimate of the mean, µ̂t, is

µ̂t =
1

N

N∑
i=1

ct−N+i = c̄t.
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Adaptive CMN

Now say we find another sample, ct+1. The new mean is

µ̂t+1 =
1

N+ 1

N+1∑
i=1

ct−N+i

=
1

N+ 1

(
N∑
i=1

ct−N+i + ct+1

)

=
1

N+ 1
(Nc̄t + ct+1)

=
N

N+ 1
µ̂t +

1

N+ 1
ct+1.
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Adaptive CMN 2

Transforming N+ 1→ N and t+ 1→ t, we have two cases

1. If we update N with each new observation

µ̂t =
N− 1

N
µ̂t−1 +

1

N
ct.

2. If we fix N to some value

µ̂t = ρµ̂t−1 + (1 − ρ)ct, ρ =
N− 1

N
.
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Adaptive CMN as a filter

<

=

H(z) =
1 − ρ

1 − ρz−1
.

Typically
I 1 second time constant.
I 100 frames per second.
I ρ = 99/100 = 0.99.
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Summary

The MFCC representation is an analogue of the human ear.
I It is non-linear in frequency.
I It has a logarithmic sensitivity.

It is also a homomorphic system for convolutional noise
I The logarithm separates out the distortion.

Notice that the homomorphic representation arises also from
the perception (human ear) point of view.
It’s not completely accidental, but rarely presented like this.
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